The Radical Cation [Fe(CO)₃(PPh₃)₂]⁺: Novel Source of Iron(11) Carbonyl Complexes

By Paul K. Baker, Karen Broadley, and Neil G. Connelly* (Department of Inorganic Chemistry, University of Bristol, Bristol BS8 1TS).

Summary The iron(I) complex [Fe(CO)₃(PPh₃)₂]⁺ undergoes novel radical-radical coupling and redox reactions, with paramagnetic (NO, NO₂, etc.) and diamagnetic ([S₂-CNR₂]⁻, S₂CPR₃, etc.) ligands, respectively, to give iron(II)

 CNR_2]⁻, S_2CPR_3 , etc.) ligands, respectively, to give iron(II) carbonyl derivatives such as $[Fe(NO_2)(CO)_3(PPh_3)_2]^+$ and $[Fe(CO)_2(PPh_3)_2(S_2CPPh_3)]^{2+}$.

Whereas many mononuclear metal carbonyl derivatives are known¹ to undergo one-electron transfer reactions the chemistry of the products is virtually unexplored. We now report that the paramagnetic, formally Fe^I, complex [Fe(CO)₃(PPh₃)₂][PF₆] (1)² is the precursor to a range of novel Fe^{II} carbonyls which cannot be prepared directly from [Fe(CO)₃(PPh₃)₂] (2).

$$\begin{array}{ccc} [\mathrm{Fe}(\mathrm{CO})_3(\mathrm{PPh}_3)_2][\mathrm{PF}_6] & [\mathrm{Fe}(\mathrm{CO})_3(\mathrm{PPh}_3)_2] \\ & & \textbf{(1)} & \textbf{(2)} \\ [\mathrm{Fe}(\mathrm{CO})_2(\mathrm{NO})(\mathrm{PPh}_3)_2][\mathrm{PF}_6] & [\mathrm{Fe}(\mathrm{NO}_2)(\mathrm{CO})_3(\mathrm{PPh}_3)_2][\mathrm{PF}_6] \\ & & \textbf{(3)} & \textbf{(4)} \end{array}$$

In CH₂Cl₂, NO gas and (1) undergo radical-radical coupling to give quantitative yields of [Fe(CO)2(NO)- $(PPh_3)_2$ $[PF_6]^3$ {3; 31P n.m.r. [(CD₃)₂CO], δ 58·98 p.p.m., † singlet]. A similar reaction with NO2 affords yellow crystals of mer,trans-[Fe(NO₂)(CO)₃(PPh₃)₂][PF₆] {4; 70%, $\nu(CO)(CH_2Cl_2)$ 2 113(wk) and 2 053(br.s) cm⁻¹; $\nu(NO_2)$ (Nujol) 1 410(med) cm⁻¹; ³¹P n.m.r. [(CD₃)₂CO], δ 38·52 p.p.m., singlet] which on heating under reflux in acetone yields (3). Oxygen transfer from co-ordinated NO₂ to CO, to give CO2 and a nitrosyl ligand, is thought4 to occur via intermediates such as (5). In refluxing CH₂Cl₂ (4) is slowly converted into (3) via a species, as yet inseparable from (4) or (3), with carbonyl $[\nu(CO)(CH_2Cl_2) \ 2\ 065(s)$ and 2.025(s) cm⁻¹] and ³¹P n.m.r. [δ 50·36 p.p.m., singlet] spectra consistent with the cis,trans-dicarbonylbis(phosphine) complex [5; $ML_n = Fe(CO)_2(PPh_3)_2$].

Complex (1) also reacts at room temperature in CH_2Cl_2 with $Me_2NC(S)SSC(S)NMe_2$ which may be regarded as a source of $Me_2NC(S)S$ radicals. After column chromatography, yellow crystals of the dithiocarbamate complex cis,trans-[Fe(CO)₂(PPh₃)₂(S₂CNMe₂)][PF₆] (6a) are isolated in moderate yield [45%, ν (CO)(CH₂Cl₂) 2 024(s) and 1 981(s) cm⁻¹; ¹H n.m.r. (CD₃NO₂) τ 2·50 (30H, m, PPh₃) and 7·69 (6H, s, Me)].

The newly discovered² mechanism for the oxidative-elimination reaction between (2) and iodine, to give [FeL₂-(CO)₃(PPh₃)], includes steps in which (1) is involved in the formation of an unusual 19-electron intermediate (7) and its subsequent oxidation to (8) (Scheme).

$$[Fe(CO)_{3}(PPh_{3})_{2}]^{+} + I^{-} \rightarrow [FeI(CO)_{3}(PPh_{3})_{2}] (a)$$

$$(1) \qquad (7)$$

$$(1) + (7) \rightleftharpoons (2) + [FeI(CO)_{3}(PPh_{3})_{2}]^{+} (b)$$

$$(8)$$

The equation for the combined reactions (a) and (b), *i.e.* $2(1) + I^- \rightarrow (2) + (8)$ suggested that (1) would react with other diamagnetic ligands in a second route to Fe^{II} carbonyl complexes. Thus (1) and $[S_2CNMe_2]^-$ (2:1 ratio) afford equimolar quantities of (2); and (6a), and (1)

and the zwitterionic ligand R_3PCS_2 (R = Ph or Buⁿ) give (2) and the red, crystalline dicationic complex cis, trans-[Fe(CO)₂(PPh₃)₂(S₂CPPh₃)][PF₆]₂ [6b; 50%, v(CO) (CH₂Cl₂) 2 052(s) and 2 011(s) cm⁻¹; v(CS)(Nujol) 1 120(med) and 1 100(med) cm⁻¹; ³¹P n.m.r. (CD₂Cl₂) δ 50·35 p.p.m. (d, $J_{PP} = 10$ Hz, PPh_3) and 19·8 p.p.m. (t, $J_{PP} = 10$ Hz, (S₂CPPh₃)].

K. B. and P. K. B. thank the S.R.C. for Research Studentships.

(Received, 6th May 1980; Com. 474.)

- † 31P chemical shifts to high frequency of H₃PO₄.
- ‡ The neutral complex (2) is readily removed from mixtures with the salts (6a) or (6b) by toluene washing.
- ¹ A. M. Bond, R. Colton, and J. J. Jackowski, *Inorg. Chem.*, 1979, 18, 1977; P. M. Treichel, D. W. Firsich, and G. P. Essenmacher, *ibid*, p. 2405, H. Li Chum, D. Koran, and R. A. Osteryoung, *J. Organomet. Chem.*, 1977, 140, 349; M. K. Lloyd, J. A. McCleverty, D. G. Orchard, J. A. Connor, M. B. Hall, I. H. Hillier, E. M. Jones, and G. A. McEwen, *J. Chem. Soc.*, *Dalton Trans.*, 1973, 1743, and references therein.
 - ² P. K. Baker, N. G. Connelly, B. M. R. Jones, J. P. Maher, and K. R. Somers, J. Chem. Soc., Dalton Trans., 1980, 579.
- ³ B. F. G. Johnson and J. A. Segal, J. Chem. Soc., Dalton Trans., 1972, 1268.

 ⁴ D. T. Doughty, G. Gordon, and R. P. Stewart, Jr., J. Am. Chem. Soc., 1979, 101, 2645; R. D. Feltham and J. C. Kriege, ibid., p. 5064.